mirror of
https://github.com/alrayyes/wiki.git
synced 2024-11-21 19:16:23 +00:00
2.1 KiB
2.1 KiB
date | id | title |
---|---|---|
2020-09-17 | 9062c9c0-b2d5-4719-b15b-6fe5122b6a9e | Rust Generics |
Function definitions
We read the following definition as: the function largest is generic over some type T. This function has one parameter named list, which is a slice of values of type T. The largest function will return a reference to a value of the same type T.
fn largest<T>(list: &[T]) -> &T {
let mut largest = list[0];
for item in list {
if item > largest {
largest = item;
}
}
largest
}
Struct definitions
struct Point<T> {
x: T,
y: T,
}
fn main() {
let integer = Point { x: 5, y: 10 };
let float = Point { x: 1.0, y: 4.0 };
}
A struct can also have multiple generic types:
struct Point<T, U> {
x: T,
y: U,
}
fn main() {
let both_integer = Point { x: 5, y: 10 };
let both_float = Point { x: 1.0, y: 4.0 };
let integer_and_float = Point { x: 5, y: 4.0 };
}
Enum Definitions
#![allow(unused)]
fn main() {
enum Option<T> {
Some(T),
None,
}
}
And again with multiple generics:
#![allow(unused)]
fn main() {
enum Result<T, E> {
Ok(T),
Err(E),
}
}
Method Definitions
struct Point<T> {
x: T,
y: T,
}
impl<T> Point<T> {
fn x(&self) -> &T {
&self.x
}
fn y(&self) -> &T {
&self.y
}
}
fn main() {
let p = Point { x: 5, y: 10 };
println!("p.x = {} and p.y={}", p.x(), p.y());
}
And again with multiple generics:
struct Point<T, U> {
x: T,
y: U,
}
impl<T, U> Point<T, U> {
fn mixup<V, W>(self, other: Point<V, W>) -> Point<T, W> {
Point {
x: self.x,
y: other.y,
}
}
}
fn main() {
let p1 = Point { x: 5, y: 10.4 };
let p2 = Point { x: "Hello", y: 'c' };
let p3 = p1.mixup(p2);
println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
}
Performance of Code Using Generics
The Rust compiler is very very clever and using generics has no performance penalty