wiki/content/20200828182546-slices.md

291 lines
4.5 KiB
Markdown
Raw Normal View History

2024-05-06 20:40:05 +00:00
---
2024-10-30 17:04:36 +00:00
date: 20200828
2024-05-06 20:40:05 +00:00
id: 8b5fb822-d1ad-46de-9299-37e3d3f5108c
title: Golang slices
---
# Basics
A slice is a dynamically sized, flexible view into the elements of an
array. Apparently they are much more common than arrays. Initialization
is pretty straight forward:
``` go
package main
import "fmt"
func main() {
primes := [6]int{2, 3, 5, 7, 11, 13}
var s []int = primes[1:4]
fmt.Println(s)
}
```
Slices are like references. Change something in the slice and the
[array](20200828182327-arrays) it references also changes
``` go
package main
import "fmt"
func main() {
names := [4]string{
"John",
"Paul",
"George",
"Ringo",
}
fmt.Println(names)
a := names[0:2]
b := names[1:3]
fmt.Println(a, b)
b[0] = "XXX"
fmt.Println(a, b)
fmt.Println(names)
}
```
Slices can contain any type, including other slices:
``` go
package main
import (
"fmt"
"strings"
)
func main() {
// Create a tic-tac-toe board.
board := [][]string{
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
}
// The players take turns.
board[0][0] = "X"
board[2][2] = "O"
board[1][2] = "X"
board[1][0] = "O"
board[0][2] = "X"
for i := 0; i < len(board); i++ {
fmt.Printf("%s\n", strings.Join(board[i], " "))
}
}
```
# Slice literals
A slice literal is like an array, but without the length, so we add more
stuff to it later
``` go
package main
import "fmt"
func main() {
q := []int{2, 3, 5, 7, 11, 13}
fmt.Println(q)
r := []bool{true, false, true, true, false, true}
fmt.Println(r)
s := []struct {
i int
b bool
}{
{2, true},
{3, false},
{5, true},
{7, true},
{11, false},
{13, true},
}
fmt.Println(s)
}
```
# Slice defaults
You can omit high and low bounds. As one would expect these default to 0
and slice length respectively
``` go
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
s = s[1:4]
fmt.Println(s)
s = s[:2]
fmt.Println(s)
s = s[1:]
fmt.Println(s)
}
```
# Slice length and capacity
One can lookup slice length (length of the slice) and capacity (length
of the array the slice references)
``` go
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
printSlice(s)
// Slice the slice to give it zero length.
s = s[:0]
printSlice(s)
// Extend its length.
s = s[:4]
printSlice(s)
// Drop its first two values.
s = s[2:]
printSlice(s)
}
func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
```
# Nil slices
Empty slices are equal to `nil`. Maybe that's a good idea, maybe it
isn't. Typing this i'm too tired to give rational input to this
philosophical quagmire.
``` go
package main
import "fmt"
func main() {
var s []int
fmt.Println(s, len(s), cap(s))
if s == nil {
fmt.Println("nil!")
}
}
```
# Make
Slices can be created with the `make` function, this way you can treat
them like arrays that we know and love.
``` go
package main
import "fmt"
func main() {
a := make([]int, 5)
printSlice("a", a)
b := make([]int, 0, 5)
printSlice("b", b)
c := b[:2]
printSlice("c", c)
d := c[2:5]
printSlice("d", d)
}
func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v\n",
s, len(x), cap(x), x)
}
```
# Append
New elements can be added to a slice with the
[append](https://golang.org/pkg/builtin/#append) function
``` go
package main
import "fmt"
func main() {
var s []int
printSlice(s)
// append works on nil slices.
s = append(s, 0)
printSlice(s)
// The slice grows as needed.
s = append(s, 1)
printSlice(s)
// We can add more than one element at a time.
s = append(s, 2, 3, 4)
printSlice(s)
}
func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
```
# Range
You can iterate over slices with `range`
``` go
package main
import "fmt"
var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}
func main() {
for i, v := range pow {
fmt.Printf("2**%d = %d\n", i, v)
}
}
```
Index or value can be skipped by using `_`. In case you only want the
index, just omit the second variable entirely:
``` go
package main
import "fmt"
func main() {
pow := make([]int, 10)
for i := range pow {
pow[i] = 1 << uint(i) // == 2**i
}
for _, value := range pow {
fmt.Printf("%d\n", value)
}
}
```